MUSTLAB # Assessing the Impact of Air Pollution Exposure on **Travel Behaviour** by Kapil Kumar Meena ## **Supervisor:** Prof. Arkopal Kishore Goswami Ranbir and Chitra School of Infrastructure Design and Management 22th August 2025 # **Big Question?** # Air Pollution Exposure and Travel Behavior: Is There a Link? YES, a Significant One. - ☐ Travel is one of the activities where commuters are **most exposed** to air pollution in daily life (Singh et al. 2021). - ☐ On average, 8% of time spent in transport is responsible for 32.7% of exposure (Dons et al. 2019) and more the time, more the exposure (concentration * travel time). # **Empirical Evidence: Travel and Exposure** | Author | Country | Exposure during activities | |----------------------------|--------------------------------------|---| | Beckx et al., 2009 | Netherlands | Highest exposure is estimated for in-transport, followed by workplaces, shopping areas and home activities | | Dons et al., 2012 | Belgium | Travelling (6% of 24 hours), the in-transport results in 21% of black carbon exposure. Concentrations levels in transport is found to be 2-5 times higher than home. | | Dons et al., 2019 | Belgium, Spain and United
Kingdom | 8% time spent in transport is responsible for 32.7% of exposure | | Shekarrizfard et al., 2020 | Toronto | For UFP and BC, the mobility based exposure is 11.6% and 63.2% higher than home based exposure. | | Smith et al., 2016 | London | People spend 94.7 to 97.9% of their time indoors and 2.1 to 5.3% in transit and responsible for 30% exposure . | | Lu et al., 2019 | Netherlands | Travel contribution to NO ₂ exposure is between 8.0 and 18.8% and to outdoor PM10 is between 4.1 and 12.2% . | Inferences: Commuters experience significantly higher exposure to pollutants while outside home/indoors during travel. # **Addressing the Challenge** The Problem ## **Research Questions?** - What are the **key factors** that influence individual exposure to air pollution during daily travel in urban settings? - How can a panel-based RP—SP survey be designed and implemented in the Indian urban context to capture seasonal variation (winter and summer) in travel behaviour? - How do travellers in Kolkata perceive and respond to air quality information in terms of route and mode choice decisions? - To what extent does travel behaviour vary across seasons (winter and summer) when air pollution levels differ significantly? - How can latent heterogeneity in awareness, attitudes, and protective actions be modelled to explain variations in behavioural responses? - In what ways can modelling insights be operationalised into decision-support tools (such as **personalised** routing applications and dashboards) to reduce exposure and support sustainable mobility? ## **Research Objectives & Framework** #### **Objective 1** To establish the conceptual and methodological framework. #### Systematic Literature Review Identify key determinants of exposure #### **Develop Panel Survey Framework** Capture seasonal variation (Winter/Summer) #### Design Stated Preference (SP) Experiment Define Attributes & Levels Generate D-Optimal Design Pre-test & Refine Implement Digital Survey Platform ### Objective 2 To empirically analyze econometric modeling... #### Administer RP-SP Panel Survey Kolkata (Winter & Summer) \vee #### Latent Class Cluster Analysis (LCCA) Uncover traveller segments \vee #### **Estimate Discrete Choice Models** (MNL, Mixed Logit, Joint RP-SP) \vee #### **Extend to Panel-Data Models** Capture seasonal variation & state dependence #### Objective 3 To operationalise findings into practical tools... #### **Develop Personalised DRUM App** Integrate preferences & real-time AQI \ #### **Build Interactive Air Quality Dashboard** Visualize exposure levels & risk patterns \vee **Derive Policy Insights & Recommendations** ## Objective – 1 - 1. To establish the conceptual and methodological framework for capturing travel behaviour under air pollution exposure - 1.1. Identify influencing factors through a systematic literature review to classify the key determinants of exposure during travel (mode, route, time-of-day, awareness, and protective actions). - 1.2. Develop a panel survey framework to capture seasonal variation (winter and summer) in exposure and travel behaviour. - 1.3. Design and implement a digital survey platform to administer RP and SP surveys efficiently while ensuring accessibility and data integrity. - 1.4. Design of a stated preference (SP) of route and mode choice experiment: - 1.4.1. Define relevant travel attributes (e.g., travel time, cost, waiting time, cleanliness, AQI levels) based on literature and pilot studies. - 1.4.2. Specify attribute levels in line with empirical evidence and urban transport conditions. - 1.4.3. Generate an efficient fractional factorial design (D-optimal) to construct choice sets that balance realism with statistical efficiency. - 1.4.4. Pre-test and refine the experimental design to ensure clarity, realism, and respondent under-standing. # **Objective – 1.1:Factors identifications** 1. Identify influencing factors through a <u>systematic literature review</u> to classify the key determinants of <u>exposure during travel</u> (mode, route, time-of-day, awareness, and protective actions). Contents lists available at ScienceDirect #### **Transport Policy** journal homepage: www.elsevier.com/locate/tranpol A review of air pollution exposure impacts on travel behaviour and way forward Kapil Kumar Meena*, Arkopal Kishore Goswami Indian Institute of Technology Kharagpur, 721302, India #### ARTICLE INFO Keywords: Air quality Travel choices Travel behaviour #### ABSTRACT Travel is an activity that everyone carries out in their daily life. While travelling, commuters are exposed to air pollution, which is likely to impact their mode, route, and/or departure time choice. Various review studies on vehicular emissions have been conducted in the past, but the aspects of its impact on resulting air quality and travel behaviour are sporadic and largely unorganized. In an effort to close this gap, this study carried out an extensive review of 63 studies to document the influence of air pollution on travel behaviour. The findings reveal that a majority of the research in this arena has been carried out in the USA and China, and the highest instances of behaviour change was observed when users shifted their routes to reduce exposure. The awareness about AQI and its real-time pre-trip information plays a vital role in lowering commuters' air pollution exposure. Finally, strategies such as congestion/emission pricing schemes, MaaS, etc. could provide a clean travel environment to all commuters by reducing their exposure during travel. # Objective – 1.1 (cont.) # Objective – 1.2 (Panel Data Framework) ## What is Panel Data? ### **Longitudinal Tracking** Repeated measurements from the same respondents across multiple time points (waves). #### **Enables Policy Evaluation** Panel data allows for precise evaluation of policy interventions and program impacts by comparing outcomes before and after implementation for the same subjects. ## Within-Person Change Crucial for estimating individual changes, controlling for unobserved differences. #### **Captures Dynamic Processes** It provides unique insights into how phenomena evolve, change, and interact over time, enabling the study of dynamic relationships and lagged effects. ## Controls for Unobserved Factors By observing the same entities over time, panel data helps account for time-invariant unobserved characteristics, reducing bias in estimates. # Objective – 1.2 (Panel Data Framework) ## **Key Challenges in the Indian Urban Context** ## Respondent Recontact High urban mobility, frequent SIM card changes, and informal addresses make recontacting the same person across waves extremely difficult. ## Brittle Matching Across Waves Without reliable geotags and unique Panel IDs, linking data from the same respondent across different waves becomes highly error-prone and unreliable. Precise Geolocation Absence Standard survey tools like Google Forms often lack the capability to capture accurate latitude/longitude coordinates at the exact interview location. ## **Operational Complexities** Managing multilingual scripts, ensuring data privacy and consent, and accommodating device variability in the field add layers of complexity. # Objective – 1.2 (Panel Data Framework) # **Overcoming Challenges: Our Approach** # Source Geolocation & Panel ID - Capture lat/long + timestamp + accuracy with consent for every interview. - Auto-generate and return a unique Panel ID to respondents post-submission (QR/SMS/email). ## **Geofenced Re-identification** On revisit, match by Panel ID and/or nearby lat/long (within a defined buffer). # **Instrument Invariance & Retention** Lock wording/scales across waves; implement version control. ## **Real-time Quality Assurance** - Dashboards to flag outliers (duration, straightlining, duplicates) instantly. - Track Winter/Summer progress and field team efficiency in realtime. ## Impact of Air Pollution Exposure on Travel Behaviour #### Did You Know? Our exposure to air pollution is highest during travel more than any other daily activity! 🚜 🎇 From sitting in traffic jams 🥈 to waiting at bus stops 🕒, commuting exposes you to harmful pollutants at levels far greater than indoors or other activities. #### About the Survey This survey explores how air quality impacts your travel decisions. Discover how air pollution exposure influences your choice of routes and modes, encouraging a shift towards greener options like public transit 🚍 🚇 Your participation contributes to creating smarter, healthier urban mobility solutions for a sustainable future. 🔭 Start Survey For Queries or Assistance #### Mr. Kapil Meena (Doctoral Scholar, IIT Kharagpur) kapil.meena@kgpian.iitkgp.ac.in #### Prof. Arkopal K. Goswami, PhD Associate Professor Chairperson Ranbir and Chitra Gupta School of Infrastructure Design and Management Indian Institute of Technology Kharagpur akgoswami@infra.iitkgp.ac.in # In-House Survey Platform # Designed for Panel Data Survey Live Survey Live Responses Code Repo: https://github.com/kapil2020/react-frontend-kgp Survey link: https://survey-iitkgp.vercel.app/ Real-time response link: https://survey-iitkgp.vercel.app/responses # Objective – 1.3 (Survey Tool) # Platform Capabilities: Precision & Performance ## **Core Technology** - Single-Page Form (SPA): All questions on a dynamic page with conditional reveals, instant validation. - Tech Stack: ReactJS (UI/logic), Tailwind CSS (responsive design), D3.js (real-time charts & maps). ## **Advanced Matching & Quality Control** - Geofenced Re-match: Locate prior respondents via Panel ID or proximity search (± buffer). - Quality Controls: Duplicate detection, duration checks, device metadata, enumerator flags. ## **Data Integrity & Security** - Built-in GPS: Consented lat/long, accuracy, and timestamp recorded with each submission. - Auto Panel ID: Unique ID displayed and shareable via QR/SMS/email for Wave-2 re-identification. - Data Format: Structured JSON payloads with schema versioning for reproducible pipelines. ## **Real-time Insights** - Real-time Analytics: Interactive dashboards to filter by Winter/Summer waves, track completion/attrition, and flag anomalies. - Secure Export: De-identified, analysis-ready long format for advanced panel modeling. # Objective – 1.3 (Survey Tool) # **Panel Survey Methodology** | 01 | 02 | |---|---| | Sampling & Onboarding | Wave 1: Winter Data Collection | | Define strata, recruit respondents, obtain consent, assign unique Panel IDs. | Collect socio-demographic, health, AQI awareness, and travel diary data. Record lat/long at interview site and return Panel ID to respondent. | | 03 | 04 | | Wave 2: Summer Data Collection | Linkage & Validation | | Re-identify respondents via Panel ID or geofence. Replicate the instrument for comparability. | Join Winter and Summer data using Panel ID + time/location stamps. Conduct consistency checks and de-identification. | # **Demonstrating Data Quality & Coverage** 723 583 Winter Valid **Observations** Summer Valid **Observations** High-quality observations retained for analysis. High-quality observations retained for analysis. 96.9% 78.2% Winter Effective **Response Rate** **Summer Effective Response Rate** Valid completed surveys from eligible cases. Valid completed surveys from eligible cases (N=746). - Accurate Matching: Combination of Panel ID and geofence significantly minimizes mislinks across waves, ensuring high data integrity. - Measurement Consistency: Identical wording and scales were maintained across seasons, ensuring strict comparability of responses. - Rigorous QC: Comprehensive duration and logic checks, duplicate removal, and de-identification processes were applied to ensure data robustness. # Objective – 1.4 (Survey Design) ## RP-Survey ## SO. Pre-Survey (GPS) Latitude/Longitude capture; optional landmark. ## S6. Socio-Demographics Gender, age, occupation, education, income, household, vehicles, license. ## **S1. Trip Information** Typical O–D, primary mode, frequency, purpose, distance. ## **S2. Air-Quality Awareness** Health awareness, perceived exposure, AQI knowledge, protective actions. ## S3. Perceptions (Likert 1–5) Awareness, PT preference, PV attitudes, route preference, tech info. _____ ## SP-Survey S5. SP — Route Choice Route A vs B; attributes: pre-trip AQI, route AQI, time, cost, green cover. ## S4. SP — Mode Choice Car / Bus / Metro / IPT; attributes: AQI, time, cost, wait, cleanliness. # Objective – 1.4 (Survey Design) ## Mode Choice Survey ## **Route Choice Survey** - 2. To empirically analyse behavioural heterogeneity and seasonal dynamics - 2.1. Administer the RP-SP panel survey in Kolkata across both winter and summer seasons. - 2.2. Apply Latent Class Cluster Analysis (LCCA) to uncover segments of travellers based on awareness, attitudes, and protective actions. - 2.3. Estimate discrete choice models (MNL, Mixed Logit, and joint RP–SP) to examine the impact of air pollution exposure on mode and route choice. - 2.4. Extend the analysis to panel-data models to capture seasonal variation and state dependence between winter and summer travel behaviour. Meena, K.K., and A.K. Goswami (2026). "Not all travellers think alike: Segmenting travel behaviour under air pollution exposure using a hybrid latent class and discrete choice approach." Submitted to the **Transportation Research Board** (TRB) 2026 Annual Meeting, Washington, DC ## **AQI** Awareness #### **AQI Awareness Vs. AQI Actions** - <u>Awareness–Action Gap:</u> While **58% understand AQI**, almost **1 in 3 still take no protective action**. - Digital Dependence: AQI checks are dominated by apps/websites (43%), far more than traditional sources (TV/newspaper <20%). - Emactive, not proactive: People check AQI weekly (28%) or only during advisories (22%), showing limited daily engagement. - A Behavioral adaptation is selective: Mode shift (23%) is the top protective action, while avoiding travel (14%) is least preferred. - **Health Impact: 32% report no symptoms;** common issues = sneezing (27%) & eye irritation (17%). - 🖺 92% agree air pollution - ■ 80%+ see PT as cleaner & - **III** Real-time AQI/apps (83%) = biggest behavior trigger. - **2** in 3 prefer cleaner routes - 🕰 Car users know risks but **resist change** \rightarrow behavior gap. | ML1 | Perceived Value & Env. Behavior | |-----|---------------------------------| | ML2 | Real-Time Info & Tech Use | | ML3 | AQI Info Seeking | | Variable | ML1 | ML2 | ML3 | |-------------------------|-------|-------|-------| | PV_Reduce | 0.673 | | | | PT_Switch | 0.725 | | | | PT_LowPollution | 0.768 | | | | PT_CleanEnv | 0.698 | | | | PT_PreferClean | 0.709 | | | | $AQ_ExposureNow$ | 0.671 | | | | RT_Greener | | 0.638 | | | $TECH_{-}Tools$ | | 0.682 | | | $HL_AQIImpact$ | | 0.611 | | | $TECH_RealTimeChoice$ | | 0.841 | | | RT_AvoidTraffic | | 0.670 | | | $PT_GreenerShift$ | | 0.811 | | | $TECH_AQIApp$ | | | 0.713 | | $AQ_{-}Info$ | | | 0.837 | | AQ _InfluenceTrip | | | 0.733 | | Eigenvalue | 3.43 | 3.34 | 2.16 | | Variance Explained (%) | 20.2 | 19.7 | 12.7 | | Cumulative Variance (%) | 20.2 | 39.8 | 52.5 | KMO (Overall): 0.87 Bartlett's Test: $\chi^2(136) = 5745.18, p < .001$ Cronbach's Alpha (Standardized): 0.88 TABLE 4: Model Fit Indices for Latent Class Cluster Models | Model | Classes | LogLik | AIC | BIC | \mathbf{G}^2 | Class Proportions | |----------|---------|----------|---------|---------|----------------|--| | 2-class | 2 | -1825.45 | 3676.90 | 3736.49 | 73.98 | 40%, 60% | | 3-class | 3 | -1804.94 | 3649.89 | 3741.55 | 32.96 | 24%, 57%, 19% | | 4-class | 4 | -1796.88 | 3647.76 | 3771.52 | 16.84 | 20%, 19%, 16%, 45% | | 5-class | 5 | -1789.30 | 3646.59 | 3802.43 | 1.67 | 13%, 15%, 7%, 10%, 54% | | 6-class | 6 | -1788.51 | 3659.01 | 3846.93 | 0.09 | 13%, 33%, 10%, 6%, 34%, 4% | | 7-class | 7 | -1788.46 | 3672.92 | 3892.93 | < 0.01 | 15%, 17%, 9%, 9%, 19%, 5%, 26% | | 8-class | 8 | -1788.46 | 3686.92 | 3939.01 | < 0.01 | 11%, 17%, 5%, 13%, 19%, 22%, 6%, 6% | | 9-class | 9 | -1788.46 | 3700.92 | 3985.09 | < 0.01 | 9%, 9%, 17%, 27%,
2%, 5%, 10%, 6%,
14% | | 10-class | 10 | -1788.46 | 3714.92 | 4031.18 | < 0.01 | 4%, 7%, 24%, 12%, 12%, 7%, 9%, 12%, 3%, 11% | Mean Cluster Score Based on Latent Attitudinal Variables | Latent Attitudinal Variables | Low Awareness
& Passive | Aware but
Inactive | Proactive AQI
Responders | | |------------------------------|----------------------------|-----------------------|-----------------------------|--| | Cluster Size (%) | 24% | 57% | 19% | | | General AQI Awareness | 2.75 | 3.58 | 4.23 | | | Private Vehicle Attitudes | 3.33 | 3.29 | 3.51 | | | Public Transport Attitudes | 3.45 | 3.36 | 3.68 | | | Route Preferences | 3.15 | 3.36 | 3.96 | | | Technology & Real-Time Tools | 2.85 | 3.31 | 4.11 | | - Proactive responders take longer trips - 58% travel >10 km vs. only 35–36% in passive groups. - III Higher travel intensity 55% of proactive responders travel *every day*, while passives are more weekly/few days. - Proactive = more Car (32%) & Metro (20%) users, while passives lean Auto/Bus. - •Overall: Proactive groups = longer, more frequent, work-based commutes, relying on private + metro modes, while passive groups = shorter, leisure/education trips with bus/auto. | Variable Name | Variable Description | Travel Mode | | | | | | | |--|---|---|---|---|--|--|--|--| | | | Auto Rickshaw | Bus | Car | Two Wheele | | | | | Air Quality Inform | ation / Awareness | | | | | | | | | website_app
newspaper
television
public_monitors | Uses AQI websites or apps
Reads newspaper for AQI info
Watches TV for AQI info
Refers to AQI public displays | -1.635 (0.696)*
-
- | -1.560 (0.578)***
-1.729 (0.650)** | -1.823 (0.720)*
-
-2.370 (0.880)** | -1.925 (0.683)*
-2.454 (0.733)**
-2.715 (0.791)** | | | | | change_mode
aware_understand
daily | Has changed mode due to AQI
Aware and understands AQI
Checks AQI daily | - | -0.921 (0.358)*
-
1.740 (0.593)** | 2.793 (0.907)** | -3.087 (0.818)** | | | | | satisfactory | Finds AQI exposure satisfactory | -2.694 (1.080)** | 1.740 (0.595) | _ | | | | | | Health | | | | | | | | | | eye_irritation | Experiences eye irritation | _ | _ | _ | 1.777 (0.490)** | | | | | Latent Class | | | | | | | | | | aware_inactive | Aware but does not take action | -1.790 (0.645)** | _ | -1.562 (0.516)** | -1.098 (0.442) | | | | | Socio-demographic | | | | | | | | | | female
no_income
income_below_25k
income_25k_50k
income_50k_1L
income_1L_1.5L
grade_10_below | Female respondent Monthly income: None Monthly income ; Rs. 25,000 Monthly income Rs. 25k-50k Monthly income Rs. 50k-1L Monthly income Rs. 1L-1.5L Education: Grade 10 or below | -5.780 (1.758)**
-4.945 (1.652)**
-4.223 (1.725)* | -3.406 (1.238)** | -5.538 (1.420)** -6.110 (1.422)*** -5.677 (1.373)*** -5.076 (1.372)*** -3.925 (1.424)** | -1.003 (0.341)* -4.200 (1.297)** -4.936 (1.306)** -4.705 (1.296)** -4.893 (1.311)** -4.888 (1.390)** | | | | | intermediate
graduate | Education: Gradue 10 of below
Education: Intermediate level
Education: Graduate degree | | -0.951 (0.298)** | -2.129 (0.833)* | | | | | | Trip Attributes | | | | | | | | | | purpose_work
purpose_education
dist_lt_2km
dist_2_5km
dist_5_10km | Trip purpose: Work
Trip purpose: Education
Distance ; 2 km
Distance 2–5 km
Distance 5–10 km | -2.483 (1.027)* -2.429 (0.965)* 3.918 (0.937)*** 3.898 (0.760)*** | -
-
-
1.131 (0.314)*** | -1.812 (0.689)** -3.100 (0.765)*** 1.287 (0.420)** | -1.742 (0.699)
-1.893 (0.697)* | | | | | Intercept | | | | | | | | | | intercept | Constant term | 9.936 (2.722)*** | 1.355 (2.530) | 6.376 (2.505)* | 9.019 (2.295)** | | | | Note: β coefficients with standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. Model fit: -2LL = 1303.37; LR $\chi^2 = 954.66$; McFadden's $R^2 = 0.42$. - Real-time AQI info drives mode shift: Apps/websites & public monitors significantly reduce Auto, Car, and 2W use nudging commuters toward Metro/PT. - Static info weaker: Newspapers & TV have smaller effects; TV shows some reduction in Car use but lacks real-time influence. - III Daily AQI checks boost PT: Frequent AQI monitoring is associated with increased Bus use, showing that active awareness promotes sustainable travel. - Mode adaptation trends: Those who change mode due to AQI are more likely to shift into Cars (enclosed "safety bubble") and away from 2W/Auto. - Health symptoms don't always reduce exposure: Riders with eye irritation still rely on 2W, revealing structural constraints on safer choices. - Awareness matters: Even "Aware but Inactive" users show lower odds of Auto/Car/2W use vs. Metro basic awareness itself discourages exposed modes. - (3) Income & education shape preferences: Low-income (<50k) groups strongly avoid Car/2W, relying on Metro; graduates are less dependent on private modes. - Trip purpose & distance matter: Short trips (<5 km) favor Auto; work/education trips favor Metro, confirming Metro's role as the commuter backbone. ## Objective – 3 #### 3. To operationalise findings into practical tools and policy recommendations - 3.1. Develop a personalised Dynamic Route Planning for Urban Mobility (DRUM) application integrating individual preferences with real-time air quality information. - 3.2. Build an interactive Air Quality Dashboard to visualise and communicate exposure levels and risk patterns to the public. - 3.3. Derive policy insights and recommend strategies to reduce inequities in travel exposure while maintaining accessibility and efficiency in urban mobility planning. Research Article **Dynamic Route Planning for Urban** Green Mobility: Development of a Web **Application Offering Sustainable Route Options to Commuters** Transportation Research Record © The Author(s) 2025 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/03611981251331011 journals.sagepub.com/home/trr S Sage Kapil Kumar Meena 10, Aditya Kumar Singh 20, and Arkopal Kishore Goswami 100 # Objective – 3 – Objective ## Google Map, that show - Shortest route, - Fastest route ## **DRUM** (current application), that show: - Shortest route, - Fastest route, - Least air pollution route (LEAP), - Least energy consumption route (LECR), - Suggested route # Objective – 3 – Methodology # **Algorithms** ## Algorithm I Get Fastest Route ``` procedure GETFASTESTROUTE (routes, mode) geojson ← {type: 'Feature', properties: {}, geometry: { type: 'LineString', coordinates: ", }} console.log({routes}) routes.sort((a, b) → a.time − b.time) if mode.includes('traffic') then geojson.geometry.coordinates ← routes[0].geometry.coordinates else geojson.geometry.coordinates ← routes[0].points.coordinates end if return {geojson, routes} end procedure ``` $$T^* = \min_{i \in \{1,2,,n\}} T_i$$ $$\mathscr{I}_f = \left\{i \in \{1,2,\ldots,n\} \mid T_i = T^* ight\}$$ ## Algorithm 2 Get Shortest Route ``` procedure GETSHORTESTROUTE (routes, mode) 2: geojson \leftarrow \{type: 'Feature', properties: <math>\{\}, geometry: \} { type: 'LineString', coordinates: ", }} console.log({routes}) routes.sort((a, b) \rightarrow a.distance - b.distance) 5: if mode.includes('traffic') then geojson.geometry.coordinates \leftarrow routes[0].geometry.coordinates 6: 7: else geojson.geometry.coordinates \leftarrow routes [0].points.coordinates 9: end if return {geojson, routes} end procedure ``` To find the shortest-distance route D^* : $$D^* = \min_{i \in \{1,2,,n\}} D_i.$$ To define the set of routes with minimal distances: $$\mathscr{I}_s = \Big\{i \in \{1,2,\ldots,n\} \mid D_i = D^*\Big\}.$$ # **Algorithms** #### **Algorithm 3** Get LEAP Route ``` procedure GETLEAPROUTE (routes, mode) geojson ← {type: 'Feature', properties: {}, geometry: { type: 2: 'LineString', coordinates: ", }} console.log({routes}) 3: routes.sort((a, b) \rightarrow a.time - b.time) if mode.includes ('traffic') then routes[0] \leftarrow (routes[0]) geojson.geometry.coordinates \leftarrow routes [0].geometry.coordinates else geojson.geometry.coordinates \leftarrow routes[0].points.coordinates end if 10: return {geojson, routes} 12: end procedure ``` $$r_{\text{LEAP}} = \min_{r \in R} E(r)$$ where the E(r) is the cumulative pollutant exposure for route r, as given by: $$E\left(r ight) = \sum_{s \in S\left(r ight)} ext{Exposure }\left(s ight) = \sum_{s \in S\left(r ight)} C\left(s ight) \cdot T\left(s ight)$$ #### Algorithm 4 Get LECR Route ``` procedure ROUTE(source, destination, tempMode) mass ← getMassfromMode(tempMode) routes ← fetch(graphhopperRoutingApiUrl) geojson ← { type: 'Feature', properties: {}, geometry: { type: 'LineString', coordinates: ", }, } for i \leftarrow 0, routes.length -1 do routes[i].totalEnergy \leftarrow 0 segments \leftarrow routes[i].instructions for j \leftarrow 0, segments.length -1 do startIndex \leftarrow segments[j].interval[0] 10: endIndex \leftarrow segments[j].interval[1] heightGain \leftarrow routes[i].points.coordinates[endIndex][2] - routes[i].points.coordinates[startIndex][2] distance ← segments j distance 12: time ← segments i .time 13: if time = = 0 and distance = = 0 then 14: 15: continue end if 16: averageVelocity ← distance/time 17: 18: totalPotentialEnergy \leftarrow mass*9.8*heightGain 19: totalKineticEnergy \leftarrow 0.5*mass*averageVelocity*averageVelocity routes[i].totalEnergy \leftarrow routes[i].totalEnergy + totalPotentialEnergy + totalKineticEnergy 20: 21: end for 22: end for 23: ROUTES.SORT((a, b) \rightarrow a.totalEnergy - b.totalEnergy) 24: geojson.geometry.coordinates \leftarrow routes[0].points.coordinates return {geojson, routes } end procedure ``` $$E_{ ext{LECR}}\left(r ight) = \sum_{s \in S\left(r ight)} \left(rac{1}{2} \, ext{mV}\left(s ight)^2 + m \cdot g \cdot h\left(s ight) ight)$$ $$V\left(s ight) = rac{\mathrm{Distance}\left(\mathrm{s} ight) }{\mathrm{Time}\left(\mathrm{s} ight) }$$ # Algorithms #### Algorithm 5 Get Suggested Route ``` procedure Getsuggested Route (source, destination) routes ← fetch(graphhopperRoutingApiUrl) for i \leftarrow 0 to routes.length - 1 do 3: routes[i].totalEnergy ← calculateRouteEnergy(routes[i]) 5: routes[i].totalExposure ← calculateRouteExposureMapbox(routes[i]) end for routes.sort((a, b) \rightarrow a.time - b.time) 8: routes.pop(routes.length - 1) routes.sort((a, b) \rightarrow a.distance - b.distance) 10: routes.pop(routes.length - 1) 11: routes.sort((a, b) \rightarrow a.totalExposure - b.totalExposure) 12: routes.pop(routes.length - 1) 13: routes.sort((a, b) \rightarrow a.totalEnergy - b.totalEnergy) 14: geojson ← {type: 'Feature', properties: {}, geometry: {type: 'LineString', coordinates: routes[0].geometry.coordinates}} 15: return {geojson, routes} end procedure ``` $$F(i) = T_i + \varepsilon D_i + \varepsilon^2 P_i + \varepsilon^3 E_i$$, for $i = 1, 2, \dots, n$. The suggested route i^* is then found by minimizing F(i): $$i^* = arg \min_{i \in \{1,2,n\}} F(i).$$ # Framework of Application # **Demo of Application** # Results | Alternatives | East Delhi | | South | South Delhi | | North Delhi | | Central Delhi | | |---------------------------------------|------------|------|-------|-------------|------|-------------|------|---------------|--| | | Car | 2W | Car | 2W | Car | 2W | Car | 2W | | | LEAP Vs. Fastest Route (Travel Time) | +24% | +36% | +54% | +7% | +35% | +8% | +42% | +16% | | | LEAP Vs. Fastest Route (Exposure) | -33% | -25% | -21% | -26% | -29% | -12% | -53% | -20% | | | LECR Vs. Fastest Route (Energy Saved) | 27% | 10% | 29% | 0% | 11% | 3% | 9% | 4% | | # **Sensitivity Analysis** ## A) Car | Traffic | East Delhi | | South Delhi | | North Delhi | | Central Delhi | | |----------------------|------------|-----------|-------------|-----------|-------------|-----------|---------------|-----------| | conditions | Change | | in time | in energy | | | % | % | % | % | % | % | % | % | | Low Peak (8 Am) | 11.63 | 23.14 | 22.50 | 22.61 | 12.00 | 27.19 | 13.04 | 17.80 | | Moderate Peak (9 Am) | 23.26 | 41.39 | 46.75 | 46.53 | 24.00 | 41.79 | 26.09 | 34.43 | | High Peak (10 Am) | 37.21 | 74.74 | 72.90 | 70.08 | 36.00 | 59.50 | 43.48 | 69.04 | ## B) Two Wheeler | Traffic | East Delhi | | South Delhi | | North Delhi | | Central Delhi | | |----------------------|------------|-----------|-------------|-----------|-------------|-----------|---------------|-----------| | conditions | Change | | in time | in energy | | | % | % | % | % | % | % | % | % | | Low Peak (8 Am) | 12.20 | 8.97 | 22.22 | 10.94 | 21.43 | 8.33 | 35.29 | 6.94 | | Moderate Peak (9 Am) | 26.83 | 20.51 | 37.04 | 23.44 | 39.29 | 18.06 | 64.71 | 19.44 | | High Peak (10 Am) | 41.46 | 38.46 | 59.26 | 34.38 | 60.71 | 26.39 | 94.12 | 29.17 | East Delhi North Delhi North Delhi # Summary **Avoid Exposure** By using LEAP route in Central Delhi, user could, by 53% **Increase in Travel** Time by **42%** in South Delhi ✓ By using LECR route user can save energy up to 28% Web Based Routing Fasted & Shortest **LEAP & LECR** All Route Application Route Route # Remaining Work **Panel Data Modelling:** The next phase of this research involves developing a panel model that combines the winter and summer survey waves, enabling the analysis of temporal variations in travel behaviour and air pollution exposure within a unified framework. **Personalized DRUM Development:** Building on the prototype Dynamic Route Planning for Urban Mobility (DRUM) application, the future direction is to develop a fully personalized platform. This enhanced version will incorporate user-specific preferences, personalized vehicle routing, and predictive forecasting. ## Publications – Journals #### **Journal Articles From Thesis** - •J1. Meena, K. K., A. K. Singh, and A. K. Goswami (2025). "Dynamic route planning for urban green mobility: Development of a web application offering sustainable route options to commuters." *Transportation Research Record*. doi:10.1177/0361198125133011. - •J2. Meena, K. K., and A. K. Goswami (2024). "A review of air pollution exposure impacts on travel behaviour and way forward." *Transport Policy*. doi:10.1016/j.tranpol.2024.05.024. #### **Other work Journal Articles** - •J3. Manoj, B. S., K. K. Meena, and A. K. Goswami (2025). "A prioritization framework to identify key attributes of transit-oriented development (TOD) using a multi-criteria decision-making approach: An Indian context." *Sustainable Transport and Livability*. doi:10.1080/29941849.2025.2516475. - •J4. Manoj, B. S., K. K. Meena, H. Panchal, G. S. Sharma, and A. K. Goswami (2025). "An integrated choice latent variable (ICLV) model to assess the willingness to bicycle for the first mile: A case of Mumbai suburban rail." *International Journal of Sustainable Transportation* (under second revision). ## **International/National Conference Presentations** - **C1.** Meena, K. K., and A. K. Goswami (2026). "Not all travellers think alike: Segmenting travel behaviour under air pollution exposure using a hybrid latent class and discrete choice approach." Submitted to the Transportation Research Board (TRB) 2026 Annual Meeting, Washington, DC (Submitted). - **C2.** Meena, K. K., Singh, A. K., & Goswami, A. K. (2025). "Dynamic Route Planning for Urban Green Mobility: Development of a Web Application Offering Sustainable Route Options to Commuters." Presented at the 7th International Conference of Transportation Research Group of India (CTRG-2023), SVNIT Surat. - C3. Meena, K. K., and A. K. Goswami (2023). "A review of air pollution exposure impacts on travel behaviour and way forward." Presented at the 16th World Conference on Transport Research (WCTR), Montréal, Canada. - **C4.** Meena, K., R. Kumar, and A. K. Goswami (2022). "On-road pollution exposure in multiple transport micro-environments: A case study of tier-2 and tier-3 cities in India." Presented at the 14th International Conference on Transport Planning and Implementation Methodologies for Developing Countries (TPMDC), IIT Bombay, India. - **C5.** Singh, A., K. K. Meena, G. Sharma, A. K. Goswami, and S. Mishra (2026). "Developing an integrated walkability score using image-based feature extraction and user preferences." Submitted to the Transportation Research Board (TRB) 2026 Annual Meeting, Washington, DC (Submitted). - **C6.** Manoj, B. S., K. K. Meena, and A. K. Goswami (2025). "A prioritization framework to identify key attributes of transit-oriented development (TOD) using a multi-criteria decision-making approach: An Indian context." Presented at the 1st World Symposium on Sustainable Transport and Livability (WSSTL-2025), IISc Bengaluru, India. - C7. Sumbhate, A., K. Meena, and A. K. Goswami (2025). "Assessing the air pollution exposure to school children in different modes of transport while commuting to school: A case of Kharagpur, India." In Proceedings of EASTS (Accepted). - **C8.** Kodukulla, R., K. K. Meena, G. Sharma, and A. K. Goswami (2025). "Accessibility assessment of urban public transit to key facilities through spatial analysis A case study of Delhi." In TIPCE, IIT Roorkee (Accepted). - **C9.** Dasgupta, S., K. Meena, D. Majumdar, and A. Goswami (2025). "Air pollution exposure among Kolkata's auto-rickshaw drivers: PM variability, health risks, and predictive modeling." In Energies, AEEE India (Accepted). - **C10.** Sumbhate, A., M. Kapil, and A. K. Goswami (2024). "Breathable modes to school: Assessing the air pollution exposure of travel choices for school children in urban environments." Presented at the 52nd Urban Affairs Association (UAA) Annual Meeting, Nashville, Tennessee, USA. - C11. Mohanty, P., M. Kapil, and A. K. Goswami (2024). "Analysing user behaviour along dedicated bicycle facilities in an urban environment." Presented at the 52nd Urban Affairs Association (UAA) Annual Meeting, Nashville, Tennessee, USA. - **C12.** Manoj, B. S., M. Kapil, Hiral, P., Gajanand, S., and A. Goswami (2024). "Assessing the willingness to bicycle for the first mile to the Mumbai suburban rail." Presented at the 17th International Association for Travel Behaviour Research (IATBR), Vienna, Austria. International Association for Travel Behaviour Research ## **Media Coverage** Sunday, June 8, 2025 THE HINDU SOURIOR ## New app helps commuters pick 'greener' routes on road The DRUM app, developed by IIT-Kharagpur researchers, has shown promise in simulations and will soon start real-world tests; its makers are also exploring integrating data from low-cost sensors on street poles and those carried by commuters Ashmita Gupta mbient air pollution is responsible for 7.2% of deaths in major Indian cities every year. There's reason to believe airborne particulate matter can cut the life expectancy of Indians by up to But traffic-related pollution is usually much worse than what urban sensors report. Researchers have estimated that commuting takes up only around 8% of a person's day but accounts for 33% of their pollution exposure. IIT-Kharagpur associate professor Arkopal Kishore Goswami, his PhD student Kapil Kumar Meena, and intern Aditya Kumar Singh (from IIITM Gwalior) found that while traffic significantly affects commuters' health, few were aware of its actual risks. Realising access to information was key, the team created the Dynamic Route Planning for Urban Green Mobility (or DRUM) web DRUM gives users five route options: shortest, fastest, least exposure to air pollution (LEAP), least energy consumption route and traffic data was the (LECR), and a combination of all four factors called the suggested route. These options are based on real-time air and traffic data. When applied to Delhi, the LEAP route reduced exposure by over 50% in Central Delhi while increasing commute time by LECR. meanwhile. helped reduce energy con- Airborne particulate matter can cut the life expectancy of Indians by up to five years. K. BHAGYA PRAKASI Drumming to a new beat DRUM's tradeoffs may not work for everyone but could make a difference for more vulnerable groups Commuting accounts for less than a tenth of an urban Indian's day but a third of their air pollution exposure The MUST Lab's DRUM app lets users pick routes based on air uality and energy efficiency It offers five routes: shortest, fastest, east exposure to air pollution (LEAP). least energy consumption (LECR), and In Central Delhi, DRUM's LEAP route reduced pollution exposure by 50% but increased travel time DRUM uses GraphHopper and Mapbox to fetch real-time traffic and pollution data for multiple vehicle types crowdsourced data and predictive features using machine learning sumption by 28% in South These tradeoffs may not work for everyone, especially given the added fuel costs of longer routes, but DRUM could make a difference for more vulnerable groups, Mr. Meena said. #### Behind the build Integrating real-time air project's biggest technical challenge, per Mr. Meena. The team's first obstacle was sparse data collection. According to UrbanEmissions, India needs around 4.000 continuous air quality stations. But by late 2024, the Central Pollution Control Board (CPCB) op- na said. This shortfall is particularly stark in megacities like Delhi. Its 40 monitoring stations leave many areas in a blind spot. Instead, the team relied on data from the CPCB and the World Air Quality Index. They implemented a segment-wise interpolation strategy to estimate pollution levels in areas without direct sensor coverage, divided routes into segments, and used nearby sensor data to estimate pollution where coverage was missing. speed while the frontend To achieve higher responsiveness, DRUM was designed to fetch live pollution and traffic data the moment a user entered a route instead of pulling data at intervals. The backend was optimised for offered a clean interface. determines routes using GraphHopper, a Java-based routing library that generates multiple options while fetching real-time traffic updates from Mapbox. This setup allows the system to handle different vehicles and adapt to cities beyond #### How it works At the heart of DRUM is a rank-based elimination method. "The logic is deliberately practical: we prioritise time first because exposure is a function of concentration times time - the longer vou're exposed, the more pollutants you inhale." Next comes distance. "After that." Mr. Meena continued, "we eliminate routes with higher pollution exposure, and finally, those with higher energy consumption, which we calculate based on elevation and average speed. The final output is a single suggested route that ba lances all four factors." To test the system, the team simulated Delhi's East, South, North, and Central corridors. The results showed that shorter or faster routes often passed through polluted zones, offsetting time or distance gains. DRUM has shown promise in simulations, and Prof. Goswami's MUST Lab at IIT-Kharagpur now plans real-world tests. They're also exploring integrating crowdsourced data with data from low-cost sensors on vehicles, street poles, or even those carried by "A major advantage of crowdsourced data is that it would allow us to expand the model beyond cars and two-wheelers, which are currently the only modes included," Mr. Meena said "With user-contributed da ta from cyclists or pedestrians... we could incorpomicro-mobility modes. The team is also looking to DRUM 2.0. Using ma chine learning models such as LSTM or Prophet, it could suggest the best route now and the best time to leave. This shift would make DRUM a truly smart mobility assistant, tailored for daily life in India's most polluted cities. (Ashmita Gupta is a science THEMOMHINDU HOME / SCI-TECH / ENVIRONMENT 11 ## IIT-Kgp app helps commuters pick 'greener' routes on the road premium The DRUM app has shown promise in simulations and will soon start real-world tests; its makers are also exploring integrating data from low-cost sensors on street poles and those carried by commuters Published - June 08, 2025 05:00 am IST ASHMITA GUPTA READ LATER FRINT ## **Invited Talks, Awards, and Patent** • Google India, Bangalore (June 2025). Delivered an invited talk presentation on the Dynamic Route Planning for Urban Mobility (DRUM) application, showcasing sustainable routing strategies that integrate air pollution exposure and energy efficiency into commuter decision-making - Best Presentation Award, CyPhySS (July 2023). India's largest annual summit on Cyber-Physical Systems (CPS), jointly organised by AI4ICPS at IIT Kharagpur and the Robert Bosch Centre for CPS at IISc Bangalore. - Personalized Dynamic Route Planning System for Sustainable Urban Mobility (2025). Patent application filed. Multimodal Urban Sustainable Transportation Research Lab **M** is not in our hands, but **e** is. Lower **e** will lead to lower **c**. All the codes presented in these slides are available at: https://github.com/kapil2020